

Solutions

featured blog articles

Extract data from Excel files with Sensible

Sensible is excited to announce native support for Excel sheets and workbooks. Excel files join Sensible’s expanding lineup of supported file types, including PDF, TIFF, JPEG, PNG, and most recently Word documents.

Read more

How to extract data from resumes with LLMs and Sensible

Explore how Sensible's SenseML streamlines HR Tech by simplifying candidate data extraction from resumes. This guide offers step-by-step instructions for incorporating Sensible's document extraction tools into your product.

Read more

See all articles

Solutions
documentation

Financial Services
Extract structured data from financial documents in seconds

Insurance
Automate data entry from loss runs, ACORD forms, policies, and more

Property
Parse structured data from offering memos, rent rolls, and more

Extract
documentation

Extract Loss Runs
Quickly and accurately capture data from loss runs

Invoice Extraction
Eliminate manual data entry

Form 10-K Parsing
Fast, accurate form 10-K data extraction

Parse Resumes
Real-time data extraction from resumes

PricingDocsAbout

about sensible

Our Story
Bringing structure to unstructured data

Security
Sensible is SOC2 certified and HIPAA compliant

Careers
Join our team

Customers
Companies using our product

Book a Demo
Get a walkthrough of the Sensible product and try it yourself

company news

Extract .doc and .docx files with Sensible

With new format support for Microsoft Word, you can now use Sensible to extract .doc and .docx files. Send your .doc or .docx file to any Sensible endpoint or upload directly to the Sensible app as usual.

Read more

Sensible Dashboard: Track your extraction performance in real-time

We’re excited to announce the launch of Sensible’s in-app dashboard. Now, you can track all your document extraction metrics in one place, in real-time. Easily aggregate performance summaries, monitor configuration success, track usage at the document type level, and view historic performance data for all production deployments.

Read more

See all news

Resources

tutorials

How to extract data from resumes with LLMs and Sensible
Explore how Sensible's SenseML streamlines HR Tech by simplifying candidate data extraction from resumes. This guide offers step-by-step instructions for incorporating Sensible's document extraction tools into your product.

Migrating off deprecated OpenAI models in a production system
Sensible is updating its document processing system by moving from OpenAI's text-davinci-003 model to the more efficient gpt-3.5-turbo-0613, following comprehensive testing and prompt optimization.

How to extract data from bank statements with the Sensible Node SDK
Use Sensible’s Node SDK to directly integrate Sensible’s document extraction and classification APIs into your product.

Guide to Using GPT-3 with Python
This tutorial guides you through the process of creating a Python application using the GPT-3 model and testing it with several text-heavy tasks, such as summarizing text, fleshing out outlines, and writing content.

All tutorials

Documentation

Guides
How Sensible extracts structured data from documents.

API Reference
For advanced integration and engineering resources.

Changelog
Stay up to date with real-time progress from Sensible.

documentation

featured blog articles

History of the PDF

Explore the remarkable history of the PDF. This ubiquitous format, which has shaped the way we share and view documents, has a story as compelling as its widespread use. Discover why the PDF, often criticized yet universally used, continues to be a vital part of our digital world in 2023.

Read more

How to scale document question answering using LLMs

Optimize LLMS for for document question answering: chunking, layout preservation, cost optimization, and confidence scores.

Read more

See all articles

sign inLog in
Schedule a demo

Sign insign up
Schedule a demo

Blog

Tutorial

Converting a PDF to Excel Using Python

Updated on
October 16, 2023

5
min read

Contributors

No items found.

Author

Fortune Adekogbe

Table of contents

Turn documents into structured data
Transform documents into structured data with Python

Get started free

Get free API key

Share this post

Developers often need to extract data from documents in various formats to get valuable business information or to automate simple tasks. Although extracting data from text, Excel, and CSV files is relatively straightforward, the task becomes challenging when working with PDF files. Extracting a table embedded in a PDF or values from unstructured text can pose difficulties since PDFs lack a well-defined data hierarchy and may contain various data types.
PDF conversion involves converting the data in a PDF file into a format that you can interact with, such as a text file, Microsoft Word, Microsoft Excel, or JSON. This article focuses on converting PDF files to Excel. You can convert a PDF to Excel using either a one-to-one or many-to-one copy. A one-to-one copy copies all content from the PDF file to an Excel sheet and maintains the same visual layout, but it offers limited flexibility in working with the data. A many-to-one copy extracts data from the PDF file and inserts it into specific cells on the spreadsheet in a structured format, making the data more useful for analysis.
Converting PDF files to Excel makes the content of documents and forms more accessible to spreadsheets’ data wrangling (filtering/querying) capabilities. It also makes it possible to validate the data quickly and, if necessary, create visualizations. This tutorial explains how to convert PDF files to Excel files. You’ll learn how to use Sensible to create a custom document type and configuration and how to extract and convert data in Python using the Sensible API.
How to Convert a PDF to Excel Using Python
The tutorial uses weekly situation report PDFs from the WHO on COVID-19 to show you how to convert a PDF to Excel using Python. You’ll use the Sensible API to configure a scraper to extract information about new cases, deaths, and so on from a table in the PDF over a 28-day period and then save that data in an Excel file.
Prerequisites
Before continuing, make sure that you have the following set up:
	Python 3.10 installed on your computer
	A code editor like Visual Studio Code
	A browser with an internet connection

Getting Started
To begin, make a project directory and launch a terminal within it. Run the following commands in the terminal to create and activate a Python virtual environment:
$ python3 -m venv env
$ source env/bin/activate

Then, run the following command to install the requests library in Python:

$ pip install requests

This library will communicate with the Sensible API via HTTP requests.
Next, open your browser and navigate to the Sensible user registration page. Enter the requested details into the form on the page and click the Create account button, then enter the verification code you received via email:

Sign in to your account, enter the additional detail requested, and click Submit to access the Sensible web app:

Creating Your API Key
To create your Sensible API key, first click the profile icon in the top right corner of the page. This action will open a drop down menu. From this menu, select the Account settings option. On the page that loads, create your API key by clicking the Create API key button which opens a dialogue box. Enter a description for the API key and your account password in the respective fields shown in the image below. Then, click the Create button.

Finally, click the Clipboard Icon shown below to copy your API key.

To use an existing Sensible API key instead, scroll horizontally in the “API keys” section and click the three dots menu button. Then, click the Retrieve Key option, enter your password, and copy your API key.
You will use this API key in the next few steps as you write and run the Python script.
Creating a Configuration
Configurations are JSON files that allow you to extract data from documents using SenseML, Sensible’s query language.
To create a configuration, first, return to the Sensible web app and navigate to the Document Types page. Then, click New document type to open a dialog box. Enter the name of the document type as shown below, leave all other options in their default state, and click Create:

This creates and opens the document type. The Configurations tab is opened by default within the document type. To make a configuration, click the Create configuration button, give it a name, and then click the Create button:

Next, navigate to the Reference documents tab. Here, you must include one or more good examples of the types of documents that are expected when this document type is used. Download the PDF of the COVID-19 situation report for March 8, 2023.
Click the Upload document button, attach the report, and select the configuration created earlier under the Associated configuration field. Then, click the Upload button:

After that, open the configuration editor by clicking any part of the reference document. Enter the following configuration in the left pane of this screen to extract the desired content from the document:
{
 "fields": [
 {
 "id": "newly_reported_covid_19_cases",
 "anchor": "Newly reported and cumulative COVID-19 confirmed cases and deaths",
 "type": "table",
 "method": {
 "id": "table",
 "columns": [
 {
 "id": "WHO Region",
 "terms": [
 "WHO Region"
],
 "isRequired": true
 },
 {
 "id": "New cases in 28 days",
 "terms": [
 "New cases in",
 "last 28 days"
],
 "stopTerms": [
 "change",
 "death"
],
 "isRequired": true,
 "type": {
 "id": "custom",
 "pattern": "^[0-9]+",
 "type": "number"
 }
 },
 {
 "id": "Change in new cases in 28 days (%)",
 "terms": [
 "Change in",
 "new cases in",
 "last 28 days *"
],
 "stopTerms": [
 "death"
],
 "isRequired": true
 },
 {
 "id": "Cumulative cases",
 "terms": [
 "Cumulative cases"
],
 "isRequired": true,
 "type": {
 "id": "custom",
 "pattern": "^[0-9]+",
 "type": "number"
 }
 },
 {
 "id": "New deaths in 28 days",
 "terms": [
 "new deaths",
 "in last 28",
 "days (%)"
],
 "stopTerms": [
 "change"
],
 "isRequired": true,
 "type": {
 "id": "custom",
 "pattern": "^[0-9]+",
 "type": "number"
 }
 },
 {
 "id": "Change in new deaths in 28 days (%)",
 "terms": [
 "Change in",
 "new deaths",
 "in last 28"
],
 "isRequired": true
 },
 {
 "id": "Cumulative deaths",
 "terms": [
 "Cumulative deaths",
],
 "isRequired": true,
 "type": {
 "id": "custom",
 "pattern": "^[0-9]+",
 "type": "number"
 }
 }
],
 "stop": {
 "type": "startsWith",
 "text": "*Percent change in the"
 }
 }
 }
]
}

This configuration file is a nested JSON object. The first level defines a "fields" key that takes a list of JSON objects. The objects under the "fields" key define the section of the text to focus on. In this case, the code is extracting the content of a table. To help Sensible locate the table of interest, the configuration assigns the "anchor" key to a string that contains relevant text in the table's title and defines the field type as "table".

Next, the configuration defines a "methods" key. The value of this field is another object that contains an "id" and a "columns" key. The "columns" key defines all the relevant columns of interest in the table. For every column, the code defines an identifier using "id" and sets the "isRequired" key to true. It also defines the "terms" key as a list of terms that are present in the column name to allow Sensible to locate them more easily. Additionally, it defines "stopTerms" for some columns to prevent Sensible from associating your desired column with other columns that contain those terms.

The configuration also adds a "type" key for columns that contain numeric values without spaces to identify them as numbers. In other cases, a custom type is used to extract only the number from the text using regular expression. Finally, it defines a "stop" key to let Sensible know where the table ends. The extracted result is displayed on the right pane, as shown below:

Click the Publish button on the top right, and then click Publish to development in the window that appears:

Take note that the environment is set to Development. This will be referenced in the code. You now have a configuration that can be used to extract data from any similar PDF file.
Extracting Data with Python
To test your configuration, create a Python script and add the following lines of code to import the required libraries and define the document type, environment, and document name as variables:
import requests

document_type = "covid_reports"
environment = "development"
document_name = "pdfs/20230301_Weekly_Epi_Update_132.pdf"

Store the Sensible API key you saved from the Sensible dashboard in a variable in your script, as shown below:

SENSIBLE_API_KEY = "INSERT YOUR API KEY HERE"

Next, in the script, add the following lines of code to define a function for extracting content from PDF files using the configuration you published:

def extract_content(d_type: str, d_name: str, env: str) -> dict:
 url = "https://api.sensible.so/v0/extract/{}?environment={}".format(d_type, env)

 headers = {
 "Authorization": 'Bearer {}'.format(SENSIBLE_API_KEY),
 "content-type": "application/pdf"
 }

 with open(d_name, 'rb') as fp:
 pdf_file = fp.read()
 response = requests.post(url, headers=headers, data=pdf_file)

 print("Extraction Status code: {}".format(response.status_code))
 if response.status_code == 200:
 return response.json()
 else:
 print(response.json())

The code block above defines a function called extract_content. This function takes three parameters—document type, document name, and API environment—and returns the extracted data as a dictionary. It first specifies the URL endpoint to which you will make a request. It then defines the request header as a dictionary containing the authorization details and the content type. The function then opens the PDF file to be scraped and passes the PDF content and the defined URL endpoint and header to the requests.post method. Finally, the function prints the status code and returns the content of the response.

Next, define a function that will convert the extracted content to an Excel file. Sensible supports generating Excel files natively, so to do this, add the code below to the script:

def convert_to_excel(ids: str) -> str:
 url = "https://api.sensible.so/v0/generate_excel/{}".format(ids)

 headers = {
 "accept": "application/json",
 "Authorization": 'Bearer {}'.format(SENSIBLE_API_KEY)
 }

 response = requests.get(url, headers=headers)

 print("Conversion Status code: {}".format(response.status_code))
 if response.status_code == 200:
 data = response.json()
 return data["url"]
 else:
 print(response.json())

This code block defines the convert_to_excel method. This method takes the document ID and returns a link to a URL for downloading the Excel file. The function first defines the URL for the API's generate_excel endpoint. In this case, the document ID is attached to the URL. Then, as before, it defines the request header with the content type and authorization details. Next, the function makes a GET request by passing the URL and the header to the requests.get method. If the response status code is 200 (OK), it returns the URL to download the Excel file. This URL is only available for fifteen minutes.

With the download URL obtained, enter the following lines of code into the script to define a function to download the Excel file to your project directory:

def download_xlsx(url: str, d_name: str) -> None:
 response = requests.get(url)
 filename = "{}.xlsx".format(d_name)
 with open(filename, "wb") as fp:
 fp.write(response.content)

 print("{} downloaded.".format(filename))

This code defines a function to download the file at a given URL. It makes a GET request with the URL and then saves the results to an Excel file.

With these functions defined, you can now extract content from a PDF file and save it as an Excel file.

To test this, download the COVID-19 situation report for March 1, 2023, create a subdirectory named pdfs in your project directory, and save the report there.

Then, enter the code below to run all of the functions you've created on the newly downloaded PDF file:

pdf_content = extract_content(document_type, document_name, environment)

url = convert_to_excel(pdf_content["id"])

if url is not None:
 download_xlsx(url, document_name[:-4])

This code block defines three variables for the document type, environment, and document name. These variables are passed to the extract_content function, which returns the relevant content. The ID of this content is then passed to the convert_to_excel function, which returns the download URL. This URL is then passed to the download_xlsx function, which downloads the Excel file to your project directory.

When you open the file, you should find content similar to the snippet below:

You have now successfully extracted data from a PDF file and converted it to an Excel file. This tutorial’s configuration, source code, and files can be found in this GitHub repository.
Conclusion
In this tutorial, you converted PDF files to Excel and used the Sensible web app to create a custom document type as well as a configuration to extract relevant data. Finally, you used Python to interact with the Sensible API to extract and convert data from PDF to Excel.
Sensible is a developer-focused document orchestration platform. It allows you to use fine-grained configurations to extract data from structured and unstructured documents. Sensible accomplishes this through the use of SenseML, a JSON-formatted query language. This query language employs machine learning techniques such as natural language processing and optical character recognition to ensure that desired data can be extracted regardless of its format. Try out Sensible today.

Transform documents into structured data with Python

Get free API key

Turn documents into structured data

Get started free

Share this post

Turn documents into structured data

Stop relying on manual data entry. With Sensible, claim back valuable time, your ops team will thank you, and you can deliver a superior user experience. It’s a win-win.

Start ExtractingBook a demo

Related posts

Take a look at some other helpful articles and tutorials.

View all

View all

5
 min read

How to extract data from resumes with LLMs and Sensible
Explore how Sensible's SenseML streamlines HR Tech by simplifying candidate data extraction from resumes. This guide offers step-by-step instructions for incorporating Sensible's document extraction tools into your product.

5
 min read

Migrating off deprecated OpenAI models in a production system
Sensible is updating its document processing system by moving from OpenAI's text-davinci-003 model to the more efficient gpt-3.5-turbo-0613, following comprehensive testing and prompt optimization.

5
 min read

How to extract data from bank statements with the Sensible Node SDK
Use Sensible’s Node SDK to directly integrate Sensible’s document extraction and classification APIs into your product.

5
 min read

Guide to Using GPT-3 with Python
This tutorial guides you through the process of creating a Python application using the GPT-3 model and testing it with several text-heavy tasks, such as summarizing text, fleshing out outlines, and writing content.

Transform documents into structured data.

Product
	Sensible Instruct
	SenseML
	Examples
	Pricing

Developers
	Documentation
	API Reference
	Changelog
	Configuration Library
	API Status

Company
	About
	Schedule Demo
	Contact Us
	Careers
	Blog

From the blog
History of the PDF
How to scale document question answering using LLMs
Sensible Dashboard: Track your extraction performance in real-time
Confidence Signals: the LLM alternative to confidence scores
Sensible's Classification API: Streamline Document Processing Workflows

Sensible © 2023

 All Rights Reserved | Terms | Privacy Policy

Transform documents into structured data.

Product
	Sensible Instruct
	SenseML
	Examples
	Pricing

Developers
	Documentation
	API Reference
	Changelog
	Configuration Library
	API Status
	Resources

Company
	About
	Schedule Demo
	Careers
	Blog

Compare
	Docparser
	Docsumo
	Nanonets
	Ocrolus

© Sensible 2023

	Terms
	Privacy Policy

